
AD-Ri54 770 THE BYZRNTI'NE FIRING SQUAD PROBLEM() MASSACHUSETTS /
INST OF TECH CAMBRIDGE LAB FOR COMPUTER SCIENCE
J E BURNS ET AL. APR 85 MIT/LCS/TM-275 N80814-93-K -0125

UNCLASSIFIED FIG 12/1i N

1. 4110L 0.

111114- 1.0 __ 2.8 32

1.8

MICROCOPY RESOLUTION TEST CHART
NATIONAL AUL AU Of AN ARDS 1961 A

. .

MASSACHUSETTSLABORATORY FOR t INSTITUTE OF
COMPUTER SCIENCE . ~~TECHNOLOGY

MIT/LCS/TM-275

THE BYZANTINE FIRING SQUAD PROBLEM
In

James E. Burns

Nancy A. Lynch

DTIC 0gELECTE;f

Li..IApril 1985

LAA

515 TECHNOLOGY SQUARE. CAMBRIDGE, MASSACHUSETTS 02139 -

85 5 15..034

1nn I apsi f i i
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) ___________________

READ INSTRUCTIONSREPORT DOCUMENTATION PAGE BEFORE COMPLEI TING FORM
I. REPORT NUM19ER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

The yzatineFirng quadProlemInterim research
The yzatineFirng quadProlemMarch 1985

6. PERFORMING ORG. RI-.PORT NUMBER

7. AUTHOR(e) D. CONTRACT OR GRAN-r NUMBER(*)

James E. Burns and Nancy A. Lynch DARPA/DOD
N00014-83-K.-0125

S. PERFOFMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
AREA&a WORK UN IT NUMBERS

j MIT LE.boratory for Computer Science
545 Technology Square
CambrdJ.dge, MA 02139___ _________

11. CONTR LLING OFFICE NAME AND ADDRESS 12. REPORT DATE

DARPA,'DOD March 20, 1985
1400 Wilson Blvd. I3. NUMBER OF PAGES

0 ArlinqTton, VA 22209 1
t4. MON IT RIN G AGEN CY N AME A ADDRESS(iI different from Controlind Office) IS. SECURITY CLASS. (*f thi. report)

ONR/Department of the Navy Unclassified
Information Systems Program e ECASIAIO/WNAIG

Arlington, VA 22217 SCHEDULE

j 16.W DISTRIBUTION STATEMENT (of 11,1.Roporl)

Approved for public release, distribution is unlimited.

3 17. DISTRIBUTION STATEMENT (of the abstract entered in Black 20, iI different from Report)

unlimited

IS. SUPPLEMENTARY NOTES

19. KEY V OROS (Contfnuae on reverse aid* ifneceseary end Identify by block number)

Agreement, Byzantine generals problem, Firing squad problem.

20. ABST R ACT (Continue an reverse oid it necesary and identity by block number)

A new problem, the Byzantine Firing Squad problem, is defined and solved in
two versions, Permissive and Strict. Both problems provide for synchronisation
of iaitially unsynchronised processors in a synchronous network, in the absence
of a common clock and in the presence of a limited number of faulty processors.
Soir tions are given which take the same number of rounds as Byzantine Agreement
but might transmit r times as many bits, where r is the number of rounds used.

DO 2 ~T 1473 EDITION Of' I NOV 66 IS OOSOLCIE
9 /N 0102-014-6601 1sacukPeAUPWR 51i TNis y'AOE (Wohn Data Siniered)

Unclassified
:.LC.URTY CLASSIFICATION OF THIS PAOEWben Does Entered)

Additional solutions are provided which use at most one (Permissive) or two (Strict)
additional rounds and send at most n2 bits plus four times the number of bits sent
by a chosen Byzantine Agreement algorithm.

Categories and Subject Descriptors: C.2.4 [Computer-Communlcation Not-
works): Distributed Systems; D.1.3 [Programming Tee..nlques]: Concurrent
Programming; D.4.1 (Operating Systems]: Process Management-ync romza.
tion; D.4.5 (Operating Systemsl: Reliability-atdlt Lolerance; D.4.7 [Operating
Systems]: Organization and Deign-distributed systema; real.time systems

General Terms: Reliability

Ace.s sI On For
NTIS R&
DTIC TAB
Unaanoced

.
Justfleaotio

Distribution,

AvaljLabl itY Codes

'a", a/or
D S Pecj

SECURITY CL= 1M AS If OF THIS PAGEfllhn Did& Entered)

THE BYZANTINE FElUNG SQUAD PROBLEM

JAMES E. BURNS
Indiana Unveristy
and
NANCY A. LYNCH
Massachusetts Institute of Technoogy

-11A new problem, the Byzantine Firing Squad problem, is defined and solved in
two versions, Permissive and Strict. Both problems provide for synchronisation
of initially unsynchronized processors in a synchronous network, in the aboence
of a comm on clock and in the presence of a limited number of faulty processors.
Solutions are given which take the same number of rounds as Bysantine Agreement
but might transmit r times as many bits, where r is the number of rounds vied.
Additiona:. solutions are provided which use at most one (Permissive) or two (Strict)
additional rounds and send at most nl bits plus four times the number of bits sent
by a chosen Byzantine Agreement algorithm. /,R 2 -' '

Categoriet and Subject Descriptors: C.2.4 [Computer-Communication Net-
works]: Distributed Systems; D.1.3 [Programming 1Tchnlques]: Concurrent
Programming; D.4.1 [Operating Systems]: Process Management-synhoiss-
tion; D.4. 10perating Systemsl: Reliability-faslt toleranice; DAY. (Operating -

Systems): Organisation and Deuign-dstribsted syste ms; red-~time estein. P

General Terms: Reliability

Additional Key Words and Phrases: Agreement, Byzantine Generals problem, Fir-

ing Squad problem

1. INTRODUCTION

We consider a problem of synchronizing a collection of processors, some of

which mig;ht be faulty. We assume that the processors are connected by a com-

plete, synchronous network. Although communication is synchronous, we will not

This work was supported in part by the following grants: ARO DAAG2)-84-
K-00SO, IIARPA N00014-83-K-0126, and NSF 8302391-AOI-DC&.

Author's addresses: J.E. Burns, Computer Science Department, 101 Lidley
Hall, Indima University, Bloomington, Indiana 47401; N.A. Lynch, 545 Technology
Square N &-43-526, Cambridge, Massachusetts 02139.

assume the global availability of a 'current time.' A solution to this synchronisa-

tion problem, which we call the "Bysantine Firing Squad' problem, would be useful

iu the following types of situations.

(a) Real-time procmsing. It might be necessary for several processors to carry

out some external action simultaneously, perhaps after the occurrence of a

particular unpredictable event. For example, several processors on board an

aircraft might be responsible for causing several actuators to perform a specific

action in concert, in response to a signal from the pilot. The signal might

arrive at the different processors at different times. A Byzantine Firing Squad

algorithm could be used to synchronize the processors' actions.

(b) Distributed initiation. Most synchronous parallel distributed algorithms as-

sume that all processors begin their protocols together. If we would like to use

such algorithms in a network in which there is no common notion of time, we

need to cause the processors participating in the algorithm to synchronise their

start times. A preliminary Byzantine Firing Squad algorithm could be used to

accomplish this.

(c) Distributed termination. In certain algorithms (e.g., synchronous probabilistic

agreement 11, approximate agreement I31), individual processors might com-

plete their parts of the algorithm at different times. If it is necessary to guar.

antee simultaneous termination, a Bysantine Firing Squad algorithm could be

run after the main algorithm.

This synchronization problem can be considered to be a combination of two

well-known problems: the Firing Squad Synchronization problem and the Byzantine

Generals problem. Accordingly, we call the new problem the Byzantine Firing

Squad problem.

2

The Firing Squad Synchronization problem was first proposed in about 1951' by

John Myhi! and described by Edward Moore in 1962 [91. In the original problera, a

finite numter of finite state machines connected in a line am to be programmed so

that they PM go to a particular state (fire') simultaneously after a %tart" sisjnal

is given by one of the machines at the end of the line, the 'eneral'. Over the

years, this problem has been generalized and widely studied (see the bibliography

in Nishitar.i and Honda [10]). In our problem, the finite state machines are repbwced

by (not ne:essarily finite) automata connected by a complete network.

The Byzantine Generals problem was first proposed by Pease, Shostak and

Lamport 111, although it did not receive that name until a later work appeared [81.

For a recent bibliography of work on the problem see Fischer IS]. The Byzaritine

Generals problem can be paraphrased as follows. The General, must broadcast a

value to tie remaining processors, even though some processors might be faalty.

If the Genieral is a reliable processor, then all reliable processors must corzmctly

determine the value. Even if the General is faulty, all reliable processors must agree

on some (arbitrary) value. (A reliable processor always behaves according to a

given protocol, while a faulty processor can behave in an arbitrary way.) We wil

assume tbat all processors are acting as Generals, broadcasting a local value to the

others, so that at the end of the algorithm all reliable processors agree on a vector of

values. T'hus, Byzantine Agreement for broadcasting a local value of each prooesor

is reached if and onv if at the end of the algorithm the following conditions hold:

(Al) Agret ment: All reliable processors agree on the same vector of values.

(A2) Validity: If processor is reliable, then 0'h component of the agreed upon '.,tor

is tht, value that 1 broadcast.

A Byzantine Agreement algorithm is called f-resilient if Byzantine Agreement

3

is reached for any number of faulty procemors not exceeding J. We will use f for

the number of faulty processors and n for the total number of processors for the

remainder of the paper.

The Bysantine Firing Squad problem combines the Firing Squad problem with

the Bysantine Generale problem. Initially, all the (reliable) processors are "quies-

cent* (not communicating). At an unpredictable time, we can require the system

to begin the firing protocol. This is done by sending special START signals to some

of the processors (possibly at different times). Within a finite number of rounds,

all of the reliable processors must simultaneously send special FIRE signals, even

though a limited number of processors might exhibit 'Bysantine failure.

Section 2 gives a more formal description of two versions, Permissive and Strict,

of the Bysantine Firing Squad problem. The versions differ in the number of START

signals which the external source must send to force firing. Section 3 presents

a family of solutions to these Bysantine Firing Squad problems; each solution is

based on a chosen Byzantine Agreement algorithm. These solutions take no more

rounds than the chosen algorithm, but might require sending r times as many bits

as sent by the Byzantine Agreement algorithm. We show in section 4 how to reduce

this to only n2 bits plus four times as many bits as sent by Bysantine Agreement

with the addition of only one preliminary round for the Permissive case and two

preliminary rounds for the Strict case.

We hope that our solutions will seem simple and clear to the reader, but this

should not imply that the algorithms are easily obtained. Indeed, a direct solution

to the problem is not immediately obvious. Instead, we give an example of a reduc-

tion between distributed problems (it would be nice to have more such examples).

We encourage the reader to consider the problem carefully before examining the

solutions in sections 3 and 4.

4

2. THE DEFINITION OF THE PROBLEM

We model a synchronous system by a state transition system. We will not

burden the reader with a lot of notational detail, but trust that the following de-

scription is sufficient to construct the formal state transition system that we have . -

in mind.

A synchronous system consists of a set of processors, an initial state for each

processor, and transition functions which determine the protocol of the procemors.

In each transition (also referred to as a round), a processor receives a mesaage

from ever) other processor and an external source, sends a message to every other

processor •d an external destination, and goes to a new state.

The reliable processors always send the messages specified by their protocols,

but the faulty processors can send any messages. In particular, we do not assume

that processors can append unforgeable signatures to their messages. For results on

the Byzantine Firing Squad problem with signatures refer to Coan, Dolev, Dwork i

and Stockmeyer [21.

In a synchronous system, information can be conveyed by the absence of a

signal as well as by an explicit signal. Thus, we distinguish a particular message,

called the null message; all other messages are simply called signals. A processor is

said to be quiescent at a certain state if, in any transition from that state in which

it receives only null messages, it sends only null messages and remains in the same

state. If a processor is not quiescent then it is awake.

We require that all processors be quiescent in their initial states. Initial qui-

escence guarantees that no signals will be sent by any reliable processor until the

external source or a faulty processor sends a signal to some reliable processor.

For the Byzantine Firing Squad problem, the only signal which is ever sent by

6

.- -o-. .-... *..- i
......~~~~~~~~~~~~~~~~~~~~~........'"' :"',"; "'' '" - : . ', :. I . . -• .i.,? - .-. :.

the external source is a special START signal, which is used to initiate the firing

protocol. The only signal which is ever sent to the external destination is a @pecial

FIRE signal, indicating that the processor has fired.

The Bysantine Firing Squad problem admits several variations depending on

how we wish to force firing. We might want firing to occur if just a single START

signal (from the external source) is received by any reliable processor. Note that

this implies that a faulty processor can cause firing by pretending to be a reliable

processor which has received a START signal. On the other hand, if we prohibit fir-

ing until some reliable processor has received a START signal, then a single START

signal is not sufficient to guarantee firing, since a lone processor cannot (in general)

convince the others that it is reliable. We term these two variations Permissive and

Strict. (An algorithm which solves one of these does not solve the other.)

An f-resilient Permissive Bysantine Firing Squad algorithm must satisfy the

following conditions whenever the number of faulty processors does not exceed f:

(CI) Agreement: If any reliable processor sends a FIRE message in some round, then

all reliable processors send a FIRE message in that round.

(C2) Permisive Validity: If any reliable processor receives a START signal, then

some reliable processor eventually sends a FIRE message.

An f-resilient Strict Bysantine Firing Squad algorithm will satisfy (Cl) and

the following additional condition whenever the number of faulty processors does

not exceed f:
L

(C2') Strict Validity:

a) If at least I + 1 reliable processors receive a START signal, then some

reliable processor eventually sends a FIRE message.

.6 ..

b) If any reliable processor sends a FIRE message, then some reliable processor

previously received a START signal.

We wish to measure the efficiency of commun cation of our algorithms. It 6 not

useful to measure the direct costs incurred by faulty processors since these night

be unbounded. We also wish to avoid charging for 'reliminary rounds' which are

caused by faulty processors and do not lead to termination. We therefore introduce

the concept of *measured portion of a computation.'

Let .4 be an algorithm. If A is a Byzantine Agreement algorithm, thent the

entire corputation from initial state to termination is measured. If A is a Permissive

Byzantine Firing Squad algorithm, then the measured portion of the computation

is from tle first reception of a START message by a reliable processor until a

reliable processor fires. If A is a Strict Byzantine Firing Squad algorithm, then

the measured portion of the computation is from the round in which the 4 I t

reliable processor receives a START signal until a reliable processor fires. Now we

can define our time measure, Rounds(A) simply as the worst case number of rounds

in the measured portion of the computation. Many communication measures are . -

possible. We shall use Bits(A) as the worst case total number of bits sent by all the

reliable processors in the measured portion of the computation. We assume that

variable length messages are used so that the shortest, non-null message that can

be sent costs one bit.

3. TIME EFFICIENT SOLUTIONS TO THE BYZANTINE FIRING SQUAD PROB-

LEMS

Our solutions are based on an arbitrary Byzantine Agreement algorithm (%which

satisfies the restriction specified below). Our algorithms inherit most of the char-

acteristics of the chosen agreement algorithm, so that behavior can be tailored

7

as desired (e.g., minimising Rovu4 or Bits). Also, the resiliency of the derived

Byzantine Firing Squad algorithm is identical to that of the Byzantine Agreement

algorithm. Since it is known that n > 3f is sufficient for Byzantine Agreement (8],

the Byzantine Firing Squad problem can also be solved whenever n > 3f. It has

also been shown 121, by reducing Lamport's Weak Byzantine Agreement problem 171

to the Bysantine Firing Squad problem, that the latter problem cannot be solved

unless n > 3f.

All of the deterministic Byzantine Agreement algorithms that we know of sat-

isfy the following condition:

(A3) Round(A) is bounded.

In this case, we say A is a Bounded Byzantine Agreement algorithm. (Note that

(A3) need not imply that A is 'immediate' as defined by Dolev, el at. (41.) In the

remainder of the paper, we will let Rounds(A) - r.

Let A be a Bounded Byzantine Agreement algorithm. We use A to construct

new algorithms Op(A) and Bs(A) which solve the Permissive and Strict Byzantine

Firing Squad problem, respectively. When A is understood from context, we simply

refer to Bp and 8s. Also, since Dp and Ds are very similar, it is convenient to

use B to refer to them jointly. In algorithm Op, the reliable processors will all fire

within at most r rounds after the first reliable processor receives a START signal.

In algorithm Ds all reliable processors fire in at most r rounds after f + 1 reliable

processors have received a START signal.

We begin by describing algorithms E',(A) and BD(A) which satisfy all the

required conditions for a slightly more general model in which the processors are

not required to be quiescent initially. The basic idea of algorithm B'(A) is to

simulate a copy of algorithm A starting in each round. Each simulation runs for

8

fly r rounds, so that at any time only r are in progress. The messages from the

ive simulations of algorithm A are coded into a single message for algorithm S'

straightforward way. At each time t, each processor begins participating in a

dat ion of algorithm A in which it sends a value which is coded to mean 0: '?Tot

dv,' or 1: 'Ready.' A processor becomes Ready upon the receipt of a START

al and remains Ready thereafter. At time t + r this simulation terminates, a:nd

xctor of values is computed. For app, all reliable processors fire if the vector is

all zero. For O's, they fire if there are at least f + 1 non-sero elements.

.eorem 1. Let A be an f-resilient Bounded Bysantine Agreement algorithm

en algorithms S' (A) and 0' (A) ate f-resilient and sati*f conditions (Cl) and

2), and (0l) and (CV'), respectively. Also, Roundu(8'p(A)) -Rounds(A) and

ts(9~p(A)) < Rotsnd.(A)xBRtuA) hold for 8', while Rouiid4(Bs(A)) =Roiunde(A)

d Bit&(Os(A4)) !5 Rounda(A) x Bits(A) hold for DB,.

Proof: The f-reuilency of B'p and B' follow directly from the f-resiliency

A. By assumption, A satisfies (Al), (AM), and (A3). By (Al), all reliable

ocessors use the same vector to make their firing decisions in each round, so

1)is satisfied (for both 0'~ and O's). By (AM), this vector will be non-scmo for the

,nnulation beginning with the round in which the first reliable processor receives

START signal, so (C2) is satisfied for '; furthermore, by (A3), firing Occurs

Mtin r rDunds after the first reception of a START signal by a reliable processor,

Roude(p(A) =Round4(A).

Algorithm B's satisfies (C2'b) since if no reliable processor ever receives a

TART signal, then no vvctor can be computed with more than f ones (by (A2)), so

Sreliabl,! processor will fire. Condition (C2'a) is also satisfied since if f +I reliable

rocessors have received START signals by round t, then a vector will be computed

by round t + r which has at least f+ I ones, causing some reliable processor to fire.

Also, firing must occur within r rounds after 1+ I reliable processors have received

a START signal, Rosnds(B:,(A)) = RomuIs(A).

The composite message transmitted by a reliable processor in one round in-

cludes exactly one message from each round of a simulation of A, so the number

of bits sent by all reliable processors in any round (using a suitable encoding) is

bounded by Bits(A). Since at most r rounds occur in the measured portion of the

computation, BitA(B'(A)) :5 Round(A) x Bits(A), for both Ep and Bs. 0

We now show how to modify the D' algorithms to obtain B algorithms which

meet the condition of initial quiescence required by our model. The difficulty in that

when a reliable processor receives its first signal, some simulations might already

be in progress. However, a great deal can be inferred about these computations.

Consider the specific computation of algorithm A in which all processors are

reliable and each sends value 0. We call this computation the sero computation and

refer to the messages that are sent as sero mewages. These computations and their

messages are completely defined and precomputable.

Any one-to-one encoding of meanings to messages can be used without affecting

the behavior of an algorithm. We choose to code a special meaning into the null

message. A null message is interpreted to consist of sero messages for each of the r

simulations in progress. Now consider the particular computation of algorithm B'

using this coding in which all processes are reliable and no START signal is received

from the external source. After r rounds, all processors begin sending null messages

and continue to do so throughout the remainder of the computation. At this point,

all processors are quiescent, according to our definition. We therefore define the A

algorithms to be identical to the D' algorithms except that the initial states of the

processors are chosen to be the states reached using algorithm B' after r rounds of

10

:.......-:-...~~~~~~~~~~~~~~~~.. -....... .-..............-.... :....-.-,.-.....-................ :...........-...... .:...........

the particular computation described above.

Theorem 2. Let A be an f-resilient Bounded Byzantine Agreement algorithm.

Then algorithms Be(A) and Bs(A) are f-reeflient solutions to the Permimive

and Strict Byzantine Firing Squad problems, respectively. Furthermore, we have

Ronds(p(A)) = Round8(8s(A)) = Roans(A), and both Bite(Bp(A)) and

Bit*(Bs(A)) are les than or equal to Rounde(A) x Bif(A).

Proor: By construction, all processors are quiescent in their initial states, so

the initial condition required by the model is satisfied both for Sp and as. The

remaining conditions follow directly from Theorem 1. 0

4. COMMUNICATION EFFICIENT SOLUTIONS TO THE BYZANTINE FIRING

' SQUAD PROBLEMS

The solutions presented in the preceding section send up to r times an many

bits as the chosen Byzantine Agreement algorithm. Since It is known that r >f

161, this is a significant increase in communication cost. Various coding tricks (such

as using short codes for 'xpected messages and taking advantage of knowledge

of which processors are faulty when possible) could be used to reduce this cost.

However, we will show how to reduce the increase in cost to a constant factor (and

an additional n bits) without any sophisticated coding. Our method requires at

most one additional round for the Permissive problem and two additional rounds

for tht St-ict problem.

We v,ish to define new algorithms, Cp(A) and Cs(A), which are siniar to

* Bp(A) and Bs(A), respectively, but send many fewer bits than A. We begin by

defining auxiliary algorithms C'p(A) and C' (A) which are identical to Bp(A) and

Bs(A) except in the way that Ready is defined and the condition under which firing

II%

-i-

=I

occurs. Tne C' algorithm also use some preliminary messages to establish the

Ready condition. We will then show how to modify the C' algorithms to get the C

algorithms.

In C',, a processor becomes Ready upon receiving any signal, rather than only

upon receiving a START signal as in Op. The firing condition is changed to fire if

there are at least f + I non-sero elements in the computed vector.' The first time a

reliable processor receives a signal and becomes Ready, it sends a special GO signal

to every other processor. At most n2 GO signals will be sent.

In C', a processor sends the GO signal to every processor after receiving either

a START signal or GO signals from f1+ I other processors (which implies that some

reliable processor has received a START signal). A reliable processor sends GO

signals only the first time such a condition occurs and sends only null messages

otherwise until it becomes Ready. A reliable processor becomes Ready only after

receiving GO signals from at least 2f + I processors (perhaps including itself). The

firing condition for C' is the same as for CIp: 'fire if there are at least 1+ I non-sero

elements in the computed vector..

Theorem S. Let A be an f-resilient Bounded Byzantine Agreement algorjithm.

Then C,(A) azd Cs(A) are f-resilient and satisfy conditions (CI) and (C2), and

(CI) and (C2'), respectively. Furthermore, Rounds(Cp(A)) < Rounds(A) + I and

Roundir(C' (A)) :5 Rounde(A) + 2.

Proof: Since C, and C's simulate A and all Orocessors use the same firing

condition, both are f-resilient and (CI) is satisfied for both.

Let t be the round in which the first reliable processor receives a START mes-

sage in C',. Then at least f + I reliable processors will be Ready by round 9 + 1,

and all reliable processors will fire no later than round t + r + 1. Thus, Cp, satisfies

12

• ,: .. -' . .- .- , .-.-.. •. ._.-.. ..,. .--..- -. ."-.- ,- - -,. -.-..-.. ..-..- ,...,.. . ..,, . ". -.-.- ' ., - ,- -,,, -

(M) and Round_(Cp(A)) 5 Rounds(A) +1.

Let t be the round in which the f+ I t procesor receives a START message in . "

C'S. Then by round t + I every reliable processor will have received GO signals from

at least j + I processors, and by round t + 2 every reliable processor will be Ready

(since at least 2f + I processors will have sent GO signals). Thus, Bring will occur

by round t + r + 2, and C' satisfies (C2'a) and Round.(9O'(A)) < Rovswd(A) + 2.

Finally, if ao reliable processor receives a START signal, then no reliable processor

will send a GO signal and no reliable processor will become Ready, hence firing will

not occur and (C2'b) is satisfied. 0

We now show how to derive C from C' by reducing the number of simulations of

A. We take advantage of the fact that all reliable processors become Ready within

a time period of at most two rounds, which is shown by the following lemma.

Lemma 4. In either Cp or Cs, if a reliable processor becomes Ready In round t

then all reliable processors become Ready in either rounds t and t - I or in rounds

t andt+ 1.

Proof: Let t be the first round in which a reliable processor becomes Ready. In

Cp, all reliable processors which are not Ready in round t will receive a GO signal

and become Ready in round t + 1. In Cs, since some reliable processor received

2f+ I GO signals by round t, every reliable processor must have received f+ I GO

signals by round t. Thus, every reliable processor will send a GO signal In round t

if not before, and every reliable processor will be Ready no later than round t + 1.

0

Let ius denote the simulation which will terminate in round t + r (and hence

conceptually began in round t) by S1. If simulation Sw would cause firing If carried

to completion (i.e., the computed vector will have more than f non-zero values),

13

id. .id" .. .'

then we say that 8wifim. In our revision of C', a procesor will not send the

messages of al r simulations that are used In C'. If processor p does send the

messages of simulation S., then we say that p participates in simulation S.

Suppose processor p becomes Ready in round t. Then, by Lemma 4, p can

deduce that S6+1 will fire since all reliable processors will be Ready no later than

round t + 1. Also, by Lemma 4, S6, will not fire since no reliable processor can

have been Ready in that round, implying that at most f ones will be in the vector

computed. Computations S6- 2 , S6-1, 5,, and St+j are the only ones which p needs

to consider.

Algorithm C is identical to algorithm C' except that if processor p becomes

Ready in round t then p will participate only in simulations S6-2, .- a, 5, S d -

Sj+. Also, p will ignore the result of S6-2 and only act (fire or not) on the

results of S6-1, Si, and S,+,. There is no difficulty in coding the four (at most)

messages of algorithm A so that each receiving processor can match them up with

the appropriate simulations.

Theorem 6. Let A be an f-resilient Bounded Bysantine Agreement algorithm

Then algorithm Cp(A) and Cs(A) ame f-resilient solutions to the Permimv and

Strict Byzantine Firing Squad problems. Jbr Cp, Round(Cp(A)) < Rounds(A) + I

and for Cs, Round_(Cs(A)) S RovndA) + 2. Both Bts(Cp(A)) and Bit"C(A))

are at most n2 + 4 x Bits(A).

Proof: Suppose that round t is the first round in which a reliable processor

becomes Ready. (If no reliable processor becomes Ready, then the theorem Is vac-

uously true.) For Cs, round t is also the first round of the measured portion of the

computation. For Cp, the first round of the measured portion of the computation

is round t- 1. By Lemma 4, all reliable processors awaken in either round t or t+ 1.

14

Call the former early and the latter late.

Early processors will participate in simulations A-2, S#-,, Sj, and Sg+. Hcm-

ever, since they will not act on the result of S,-2, the messages which are Input

to these simulations are irrelevant. Late processors will participate in simulati,)ns

a%-, S, St+,, and S+2. Since all reliable processors participate in simulations

A.-1, S6, and S+, the resulting vectors that they compute must satisfy conditions

(Al) and (2). This implies that (CI) is satisfied by both Cp and Cs and that

both C algorithms are f-resilient.

Since: ll reliable processors are Ready by round t + 1, +1 is guaranteed to

fire. By the definition of Ready for Cp, condition (C2) Is satisfied by Cp, and firing

will occur within r+ I rounds after a reliable processor receives a START signal (or

any other rignal), so Round8(Cp) < Roundi(A) + 1.

In Cs, if f + 1 reliable processors receive a START signal In round e, then

some reliable will become Ready by round t + 1. By the foregoing discussion,

some reliable processor will fire by round t + r + 2, so condition (C2'a) holds mad

Rounda(Cs) < Round&(A) + 2. On the other hand, if no reliable processor receives a

START signal, then no reliable processor will send a GO signal and hence no reliable

processor will become Ready, so (C2'b) holds.

Each processor participates in at most four simulations of algorithm A. There

is no difficilty in coding the messages of these simulations to use at most four times

the number of bits used by algorithm A. The GO messages can usually "plggyba.k

at no cost in Cs and sometimes do so In Cp since any non-null message will do to

communic ite a GO signal. Otherwise a single bit will suffice to send GO signal,

so, B<s(Cs(A)) n + 4 x Bit4(A), and Bits(Cs(A)) : n2 + 4 x Big.(A). 0

15 •,

Acknowledgment: We wish to thank Mike Fischer for suggestions on the presen-

tation of these ideas, and Brian Coan and John lanco for their criticism of early

drafts of this paper.

REFERENCES

1. BEN-OR, M. Another advantage of free choice:. Completely asynchronous

agreement protocols (extended abstract). In Proceedings of the Second Annual

ACM Symposium on Principles of Distributed Computing (Montreal, Quebec,

Canada, August 17-19, 1983). ACM, New York, 1983, pp. 27-44.

2. COAN, B., DOLEV, D., DWORK, C. AND STOCKMEYER, L. The dis-

tributed firing squad problem. To appear in ACM Symposium on the Theory

of Computing, 1985.

3. DOLEV, D., LYNCH, N., PINTER, S., STARK, E., AND WBIHL, W.

Reaching appracimate agreement in the presence of faults. In Procesdinp.

of 3rd Annual IEEE Symposium on Reliability in Distributed Software and

Database Systems. IEEE, New York, 1983.

4. DOLEV, D., REISCRUI, R., AND STRwc, H.R. 'Eventual'is earlier than

'immediate.' In Proceedings 23rd Annual Symposium on Foundations of Com-

puter Science (Chicago, IL, November 3-5, 1982). IEEE, New York, 1982,

pp. 196-202.

5. FISCHER, M.J. The consensus problem In unreliable distributed systems (A

brief survey). YALEU/DCS/RR-273, Yale University, New Haven, CT, June
1983.

6. FISCHZR, M.J. AND LYNCH, N.A. A lower bound for the time to msmu

interactive consistency. Information Processing Letters 14, 4, (June 1982), pp.

183-186. t

7. LAMFORT, L. The weak Bysantine generals problem. Journal of the ACM 30,

3 (July 1983), 668-676.

8. LAMPORT, L., SHOSTAK, R., AND PEASE, M. The Byzantine generals

problem. ACM Transactions on Programming Languages and Systems 4,3

16 "

S

..

(July 1982), 32-401. (Also see The Dysantine generals problem, Tech. Report

54, Computer Science Lab., SRI International, 190.)

9. MooRn, E.F. The firing squad synchronisation problem. In Bequemtdal Ma-

china, Selected Pape . MoOR, E.F., Ed., Addison-Wesley, Reading, MA,

1964, pp. 213-214.

10. NISHITANI, Y., AND HONDA, N. The firing squad synchronsation problem

for graphs. Theoretical Computer Science 14, (1981), 39-61.

11. PBASE, 1., SHOSTAK, R., AND LAMPORT, L. Reachin agreement in the

presence of faults. Journal of the ACM 27, 2 (Apr. 1960), 228-234.

qo°. -

OFFICIAL DISTRIBUTION LIST

1985

Director 2 Copies
Information Processing Techniques Office
Defense Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, VA 22209

Office of Naval Research 2 Copies
800 North Quincy Street
Arlinaton, VA 22217
Attn: Dr. R. Grafton, Code 433

Director, Code 2627 6 Copies
Naval Research Laboratory
Washington, DC 20375

Defense Technical Information Center 12 Copies
Cameron Station
Alexandria, VA 22314

National Science Foundation 2 Copies
Office of Computina Activities L
1800 G. Street, N.W.
Washincton, DC 20550
Attr.: Program Director

Dr. E.B. Royce, Code 38 1 Copy
Head, Research Department
Naval Weanons Center
China Lake, CA 93555

Dr. G. Hopper, USNR Cov L
NAVDAC-00]
Department of the Navy
Washinaton, DC 20374

..

FILMED

7-85

DTIC

